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First Principles and Composite AI
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Crop Composition Data for EU Regulatory Submission
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EFSA Difference and Equivalence

Compared to comparator:
No difference
Difference

Compared to references:
Equivalent
Likely Equivalent
Less Likely Equivalent
Not Equivalent
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Common flaws to implement EFSA’s approach

• Comparator’s genetic 
composition not 
equivalent to GMO

• Reference varieties do 
not capture adequate 
range of diversity

• Reference varieties 
different from 
Comparator
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Composite AI – “Self-Service” Analytics
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First Principles AI – Thinking Through the Question
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Quantifying and Weighting Errors
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Analyzing Composition Components All at Once?

• Composition endpoints are 
structurally related

• Composition endpoints have 
correlated errors

• Independent Analysis of each results 
in a Multiple Testing Problem

Distill each endpoint into few information 
rich vectors (e.g. Principal Components)

Generate Clusters among observations

Test GM for ‘cluster belonging’ and within-
cluster variance
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Cluster-based Difference Testing

Difference: Does the GM cluster 
with its comparator? (x2)
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Cluster-based Equivalence Testing

How do GM and Reference compare in 
their cluster centrality (t-test)
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First Principles and Composite AI

• Self-service data analysis crucial for front-
line business and scientific decisions

• Data generators possess invaluable 
understanding of data (and error) 
generation process

• Site-Analyte inverse variance weighting 
leads to less equivalence (and probably 
more differences)

• Clustering and cluster statistics can test 
wholistic GMO compositional difference 
and equivalence

Applied to EFSA Difference and Equivalence Testing

Clustering following best linear unbiased 
estimates of each site*analyte combo
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Synthetic Data And Decision Intelligence
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USDA Germplasm Resources
If your reference varieties aren’t working, change them!
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Germplasm Phenotypes → case for synthetic data

Before After

Imputation can backtrack the most likely values in sparse data sets
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How does it work?
Discover relationships among variables
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Evaluating Synthetic Data Validity

Arginine vs Crude ProteinLinoleic vs Oleic

Is there sufficient mutual information?

Are the output relationships reasonable?
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Decision Intelligence
Identify important variables Assess scenarios Undertake classification

Take the 
decision

With 
human-in-
the-loop
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Synthetic Data and Decision Intelligence

GM distribution across axes of soybean compositional variability

Applied to Reference Varieties

• Synthetic data is an 
enabler to create models 
where data is sparse or 
unknown
• Imputation is one form of 

synthetic data

• Decision intelligence 
reduces intensive data 
sets into actionable 
classifications

• USDA Germplasm a 
useful source of 
reference information
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AI Simulation
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AI Simulation
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Data Simulation

• Algorithms associated with 
statistics and machine learning 
can both provide estimates and 
predictions

• Partitioning into training and 
holdout data sets ensures 
generalizability

• Continuous covariate 
regressors provide a basis for 
extrapolation

• Anything can be modeled… do 
you have the data to do it?

Applied to Compositional Extrapolation

Model to predict reference varieties in a sea of 
germplasm based on composition
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Generative AI
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Generative AI Application

What is the best way to analyze GMO composition data to assess safety?:

Analyzing GMO (Genetically Modified Organism) composition data to assess safety typically involves a multi-faceted approach that combines 
various methods and considerations. Here's a general guideline for analyzing GMO composition data:

Define the Safety Parameters: Identify the specific safety parameters you want to assess, such as allergenicity, toxicity, and nutritional 
equivalence.

Collect Comprehensive Data: Gather data on the composition of the GMO and its non-GMO counterpart, including proteins, carbohydrates, 
fats, vitamins, minerals, and other relevant components.

Statistical Analysis: Use statistical analysis to compare the GMO and non-GMO data sets. Common statistical methods include t-tests, ANOVA, 
and multivariate analysis techniques to detect any significant differences.

Evaluate Known Allergens and Toxins: Assess whether the GMO contains known allergens or toxins and compare their levels to established 
safety thresholds.

Use Bioinformatics: Employ bioinformatics tools to analyze the DNA and protein sequences of the GMO for potential allergenicity or toxicity. 
Compare these sequences to established databases of known allergens and toxins.
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Generative AI Application

Tell me more about statistics and machine learning for nutritional equivalence

Statistics and machine learning techniques play a vital role in assessing nutritional equivalence between genetically modified organisms (GMOs) and their 
non-GMO counterparts. Here's how they can be applied:

Data Collection and Preprocessing:
Collect data on the nutritional composition of GMOs and non-GMOs, including information on proteins, carbohydrates, fats, vitamins, minerals, and other 
relevant nutrients.
Preprocess the data by handling missing values, outliers, and normalizing variables to ensure that it's suitable for analysis.

Descriptive Statistics:
Start with basic descriptive statistics to summarize and visualize the data. This can include measures like mean, median, standard deviation, and histograms 
to understand the distribution of nutritional components.

Hypothesis Testing:
Use statistical hypothesis testing techniques to determine if there are significant differences in nutrient levels between GMOs and non-GMOs. For instance, 
you can perform t-tests or ANOVA to assess differences in means.

Machine Learning Classification:
Employ machine learning classification algorithms to predict whether a sample is GMO or non-GMO based on its nutritional composition. Feature selection 
and engineering are crucial in this step.
Common algorithms include logistic regression, decision trees, random forests, and support vector machines.
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Generative AI Application

Tell me about a robust data analysis process to address EFSA GMO crop composition requirements for import registration. Apply
the rules of European Commission Implementing Regulations 503/2013, EFSA Guidance for risk assessment of food and feed 
from genetically modified plants, EFSA Statistical consideration for the safety evaluation of GMOs, EFSA Guidance on the 
agronomic and phenotypic characterisation of genetically modified plants, and other relevant European sources. Apply 
additional well-suited statistical techniques to the problem to support a more rigorous safety evaluation within the data 
presented. 

Addressing EFSA GMO crop composition requirements for import registration involves a systematic and robust data analysis process that complies with 
European Commission regulations and EFSA guidelines. Here's a step-by-step approach:

Step 1: Data Collection
1.1. Gather comprehensive data on the genetically modified (GM) crop and its non-GM counterpart(s), including information on genetic modifications, 
cultivation practices, and environmental conditions.

Step 2: Data Preprocessing
2.1. Clean the data to remove any outliers or errors.
2.2. Normalize or transform the data as necessary to ensure comparability.
2.3. Separate the data into appropriate categories or groups based on crop type, location, and other relevant factors.

Step 3: Statistical Analysis
3.1. Descriptive Statistics:

Calculate summary statistics (mean, median, standard deviation, etc.) for each compositional parameter in GM and non-GM crops.
Visualize data using histograms, box plots, and scatter plots to identify trends and differences.
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Generative AI Application

Also, describe an audacious and popular modeling technique that uses available data and would suitably test GMO compositional difference and 
equivalence.

An audacious and popular modeling technique that can be applied to test GMO compositional differences and equivalence is Machine Learning (ML), 
specifically Random Forest:

Data Preparation: Utilize the preprocessed data as input features and label GM and non-GM crops. Ensure the data is properly balanced and split into training 
and testing sets.

Random Forest Modeling:

Train a Random Forest classifier to distinguish between GM and non-GM crops based on their compositional data.
Random Forest can handle high-dimensional data, capture complex interactions, and provide feature importance rankings.
Feature Importance Analysis: Use the Random Forest model to identify which compositional parameters contribute the most to the classification decision. 
This helps pinpoint the most critical differences between GM and non-GM crops.

Validation and Interpretation:

Validate the model's performance using appropriate metrics (accuracy, precision, recall, etc.) on the testing dataset.
Interpret the model's results to assess the significance and biological relevance of compositional differences.
Equivalence Testing:

Integrate the model's predictions with equivalence testing techniques to determine if the observed differences are within acceptable limits.
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Common AI excellence threads across organizations

Metadata
• Common definitions
• Data Dictionary

Data Access
• Ease of use 
• Tools

Architecture
• Standards
• Scalable solution(s)

Data Ownership
• Go-to-person
• Usage guidelines

Reporting / Analytics
• Single access point
• Growing need

Culture
• Break division silos
• Create transparency

Data trust
• Consistency across sources
• Ease of validation

Data Integration
• Unfragmented data
• Data ready for use

Data Regulation
• Data provenance
• Firewalls
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How SAS supports 21st century regulatory science teams

Facile – for all 
study personnel

Traceable and 
integrated

Auditable from 
data to report
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Overall Summary

• Composite and First Principles AI enables better [statistical] inference

• Synthetic data and decision intelligence facilitate faster and more 
robust decision frameworks

• When done well, AI simulation supports extrapolation to ‘edge 
scenarios’.

• Generative language models can summarize lots of information 
quickly and can spark ideation

• SAS enables regulatory scientists to adopt and expand multimodal 
analytics

Trends in AI and Analytics
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Confidential

Questions  
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