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Crop Composition Data for EU Regulatory Submission

REGULATIONS 2

=
Atlantic, 1A
Atlantic, 1A
Atlantic, 1A
Atlantic, 1A
Atlantic, 1A
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Atlantic, 1A
Atlantic, 1A
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Atlantic, 1A
Atlantic, 1A
Atlantic, 1A
Atlantic, 1A
Atlantic, 1A

Amino Acids Alanine mg/g DW omp Backgrour Non-GM

COMMISSION IMPLEMENTING REGULATION (EU) No 503[2013 Amino Acids Alanine mg/g DW omp Backgrour Non-GM
of 3 April 2013 Amino Acids Alanine mg/g DW omp Backgrour Non-GM

for authorisation of genetically modified food and feed in accordance with AminoAcids | Alanine | mg/gDW omp Backgroun Non-GM
Rtgu]ﬂhnn (EC) No 1829/2003 of the European Parliament and of the Council and amending Amino Acids Arginine mg/g DW omp Backgrour Non-GM
Commission Regulations (EC) No 641/2004 and (EC) No 1981/2006 Amino Acids Arginine me/g DW omp Backgrour Non-GM

Amino Acids Arginine mg/g DW omp Backgrour Non-GM

Amino Acids Arginine mg/g DW omp Backgrour Non-GM

Amino Acids  Aspartic Acid  mg/g DW omp Backgroun Non-GM

Statistical considerations for GMOs safety Amino Acids = Aspartic Acid  mg/g DW omp Backgroun Non-GM
Amino Acids = Aspartic Acid  mg/g DW omp Backgrour Non-GM

SCIENTIFIC OPINION Amino Acids ~ Aspartic Acid mgr’g Dw omp Backgrour Non-GM

Amino Acids Cystine mg/g DW omp Backgrour Non-GM

Scientific Opinion on Amino Acids Cystine mg/g DW omp Backgrour Non-GM

Amino Acids Cystine mg/g DW omp Backgrour Non-GM

Statistical considerations for the safety evaluation of GMOs ' Amino Acids Cystine mg/g DW omp Backgroun Non-GM
Amino Acids | Glutamic Acid  mg/g DW omp Backgrour Non-GM
Amino Acids | Glutamic Acid  mg/g DW omp Backgrour Non-GM
European Food Safety Authority (EFSA), Parma, Italy Amino Acids = Glutamic Acid  mg/g DW omp Backgrour Non-GM

Amino Acids ~ Glutamic Acid  mg/g DW omp Backgrour Non-GM

Amino Acids Glycine mg/g DW omp Backgrour Non-GM

Amino Acids Glycine mg/g DW omp Backgrour Non-GM

Amino Acids Glycine mg/g DW omp Backgrour Non-GM

efsa Amino Acids Glycine mg/g DW omp Backgrour Non-GM

H Amino Acids Histidine mg/g DW omp Backgrour Non-GM

European Food Safety Authority EFSA Journal 2011; 9(5):2150 Amino Acids i me/g DW omp Backgrour Non-GM
Amino Acids istidi mg/g DW omp Backgrour Non-GM
SCIENTIFIC OPINION Amino Acids istidi mg/g DW omp Backgrour Non-GM
Aming Acids Isoleucine mg/g DW omp Backgroun Non-GM
Amino Acids Isoleucine mg/g DW omp Backgrour Non-GM
Amino Acids Isoleucine mg/g DW omp Backgrour Non-GM
genetically modified plants! Amino Acids | Isoleucine  mg/g DWW omp Backgroun Non-GM
Amino Acids Leucine mg/g DW omp Backgrour Non-GM
" " Y o y - 23 Amino Acids Leucine mg/g DW omp Backgrour Non-GM
EFSA Panel on Genetically Modified Organisms (GMO) Amino Acids Leucine o~ omp Backgrour Non-GM
European Food Safety Authority (EFSA). Parma. Italy Amino Acids Leucine mg/g DW omp Backgroun Non-GM

Amino Acids Lysine mg/g DW omp Backgrour Non-GM

EFSA Panel on Genetically Modified Organisms (GMO)**

Guidance for risk assessment of food and feed from
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EFSA Difference and Equivalence

Compared to comparator:
No difference
Difference

Compared to references:
Equivalent
Likely Equivalent
Less Likely Equivalent
Not Equivalent

adjusted adjusted
outcome lower line of upper equivalence
type equivalence no equivalence category
limit difference limit

Qg
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Difference from Comparator

Common flaws to implement EFSA’s approach

Difference and Equivalence
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Comparator’s genetic
composition not
equivalent to GMO

Reference varieties do
not capture adequate
range of diversity

Reference varieties
different from
Comparator

Cg



Composite Al — “Self-Service” Analytics

2 Run B € Copyto MyTasks + CodetoFlow *

Data Model Options Output Information

v Data
|WORK.COMFSTUDY1 A =]
Y Filer:

v Roles

Dependent variable: *

o8

v Explanatory Variables

Classification variables: +

& genotype
® rep

& site

& Background

& genotypegroup

> Treatment of Missing Values

Continuous variables: +

Code Log Results Output Data (1)

Oct 9,2023,1:37:22 PM @ =

#EditCode 0O 3

1 /*

2 *

E] 6.9

a4

5

6 BPE91823"

7 (Windows NT 18.8; Winb4; x64) AppleWebKi
8 gtech2-viyad.eastus2.cloudapp.azure.com/
9 *

1@

11 ods noproctitle;

12 ods graphics / imagemap=on;

13

14 @ proc sort data=WORK.COMPSTUDY1l cut=Work._ tempsorted_;

15 by Analyte;

16 run;

17

18 @ |proc mixed data=Work._ tempsorted_ method=reml alpha=8.1;
19 class genotype rep site Background genotypegroup;

20 model y=genotypegroup / ddfm=kenrog;

21 random rep site rep*site genotype*Background /;

22 weight InverseCv;

23 by Analyte;

24 run;

25

26 @ proc delete data=Work._ tempsorted_;

27 run;

Copyright © SAS Institute Inc. All rights reserved.



First Principles Al — Thinking Through the Question

Residual

Residual

Conditional Studentized Residuals fory

Percent

30

20

Quantile
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-36 28 -2 12 04 04 12 2 28
Residual
Residual Statistics
Observations 180
Minimum -3573
Mean 168E-7
Maximum 3.1408
Std Dev 1.0161
Fit Statistics

Objective 982.93
AlC 988 93
AICC 989.07
BIC 989 52

38

40 42 44 46
Predicted
site
@ Atlartic, 1A @ Bagey. 12 @ Carlyle. IL @ Delevan. Wi @ Germansville, PA

@ Lime Springs,|A @ Richland, A @ Stewardson,IL I York, NE
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CW (Mean)

Quantifying and Weighting Errors
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Analyte
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M C_|soleu B C_Oleic W C_Tryp
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Analyzing Composition Components All at Once?

Composition endpoints are
structurally related

Composition endpoints have
correlated errors

Independent Analysis of each results
in a Multiple Testing Problem

Prin2

GM Comp and Reference Composition Clusters - 1st dimension

1.00+

0.00 4

® Comp @ GM @ Reterence 3 1

N

T
0.00

T T T
025 050 075

Prin1
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Cluster-based Difference Testing

Difference: Does the GM cluster
with its comparator? (x?)

Table of genotypegroup by CLUSTER

CLUSTER{Cluster)
2 3 R
a 26 6 36

0.00 1111 7222 16.67

833

Frequency
Row Pct
genotypegroup
Comp
GM
Total

1 29 3 36
278 8056 B33

5 1 9 72

Statistics for Table of genotypegroup by CLUSTER

Statistic

Chi-Square

Likalihood Ratio Chi-Square
Mantel-Haenszel Chi-Square
Phi Coefficient

Contingency Coefficient
Cramar's V

DF Value Prob
3 59636 01134
3 7.2694 00638
1 13683 02421

0.2878
0.2766
0.2878

Prin2

GM Comp and Reference Composition Clusters - 1st dimension

1.00

0.50

000+

® Comp @ GM @ Reterence

0.00

T T
025 050

Prin1

T
075 1.00
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Cluster-based Equivalence Testing

How do GM and Reference compare in
their cluster centrality (t-test)

Distribution of DISTANCE
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Prin2

GM Comp and Reference Composition Clusters - 1st dimension

1.00 4
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N

® Comp @ GM @ Reterence 3 1

i

T
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T
025 050 075 1.00
Prin1
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First Principles and Composite Al
Applied to EFSA Difference and Equivalence Testing

Self-service data analysis crucial for front-
line business and scientific decisions

Data generators possess invaluable
understanding of data (and error)
generation process

Site-Analyte inverse variance weighting
leads to less equivalence (and probably
more differences)

Clustering and cluster statistics can test
wholistic GMO compositional difference
and equivalence

Copyright © SAS Institute Inc. All rights reserve

GM Comp and Reference Composition Clusters - 1st dimension

Clustering following best linear unbiased
estimates of each site*analyte combo

Osas
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USDA Germplasm Resources

If your reference varieties aren’t working, change them!

Germplasm Diversity Sized by Crude Protein

USDA-ARS Germplasm
Resources Information
Network (GRIN)

Collections « Crop Germplasm Committees ~

GRIN-Global:
Empowering
and enabling
crop diversity

P LS.

Search over 600,000 aciive
accessions

Copyright © SAS Institute Inc. All rights reserved.
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A
D_Access
FC 31557
FC 31579
FC32141
Pl 189926
Pl 248398
Pl 248402
PI 355067
PI1355068
PI 404154
PI 417576
PI 417579
PI 417582
Pl 438492
P 438493
Pl 438494
PI 438500
PI 506417
PI 508083
PI 508084
PI 508266
PI1 508268
P1 508269

Germplasm Phenotypes = case for synthetic data

(T G
D_Orig C_Argin
United States
lllinois, Unit 7.48
South Dakot 7.5
United States

, United States

, United States
Hawaii, United States
Hawaii, United States
United State 7.57
United States
United State
United State
United States
United States
United State 7.4
United State 7.3
lllineis, Unit 7.6
Minnesota, 7.5
Minnesota, 7.3
North Carol 7.6
Virginia, Un 7.7
Virginia, United States

H
C_Cystei

1.48
1.5

|
C_lsoleu

4.6
4.6

J
C_Leuci

K
C_Lysin

6.59
6.5

L
C_Palmit
15.2
10.4
11.5
15

M
C_Threo

N e} ) D_Orig

C_Tryp C_val United Sta
Illinois, Un
South Dak
United Sta
linais, Un
llinois, Un
Hawaii
Hawaii, Ur
United Sta
United Sta
United Sta
United Sta
United Sta
United Sta
United Sta
United Sta
Winois, Un
Minnesotz
Minnesotz
North Carc

Virginia, U

Virginia, U

C_Argin

7.43
7.48
7.5
7.69
7.15
7.35
7.62
7.48
7.57
7.53
6.9
7.4
7.46
7.5
7.4
7.3
7.6
7.5
7.3
7.6
7.7
7.63

C_Cystei

135
1.48
15
155
1.43
1.59
1.41
1.44
1.45
1.49
2
1.7
1.46

4.7
46
4.6

4.77

435

4.58

4.45

4.42

455

4.97
5.5
5.1

C_lsoleu C_Lleuci

7.94
7.84
8
8.04
7.84
7.88
7.55
7.45
7.87
8.28
8.3
7.9
8.08
7.94
7.5
8.1
8
8.1
7.6
7.7

C_Lysin

6.42
6.59
6.5
6.9
5.96
6.8
6.23
6.17
6.44
6.27
6.1
6.6
6.11
6.44
6.2

15.2
10.4
115
15
12.57842
10.7
11.2
115
113
13
12.05
11.9
12.8
123
11.45
10.95
10.5
10.25
11.55
12.34
118
10.5

Imputation can backtrack the most likely values in sparse data sets

Copyright © SAS Institute Inc. All rights reserved.

3.59
3.67

3.7
3.61
3.57
3.89
3.39
3.38
3.58
3.46

33

3.6
3.52
3.67

C_Palmit C_Threo C_Tryp

1.28
1.16

14
1.35
1.27
132
1.13
121
119
1.33

1.2

1.5
132

C_val



Correlations

How does it work?
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Evaluating Synthetic Data Validity

Is there sufficient mutual information?

Group C Argin C CP C Cystei C Fat C Isoleu C Leuci C Linoli C_Lnolei C_Lysin C Methio C Oleic C Palmit C Stear C Threo C Tryp C Val Freq

1 X X X X X X X X X X X X X X X X 2066
20 X . X X X X X X X o 5 . 521
3 . X . X X X X . . . . . 316
4 . X . X X X X X X . . . 2013
5 . X . X X X 18
6 . X . X . . . . . . . . . 4
7 O o} (e} o] o] o] (o] o o] o o (o} o] (o} o] ¢} 21

Are the output relationships reasonable?

Pre-imputation Post-imputation Pre-imputation Post-imputation

Eraquency

Linoleic vs Oleic

Copyright © SAS Institute Inc. All rights reserved.



Decision Intelligence

C_Palmit

Cluster ID (1) High_Yield MG3 D_Access C_Tryp C_Palmit P_Mdate P_SWght °
n s High_Yield MG3 PI548 1.29 3 1002

927

Take the
decision

Cluster ID (1)
WS 7 HE WA

Copyright © SAS Institute Inc. All rights reserved.




Synthetic Data and Decision Intelligence

GM distribution across axes of soybean compositional variability

* Synthetic data is an
enabler to create models
where data is sparse or
unknown

* Imputation is one form of
synthetic data

* Decision intelligence
reduces intensive data
sets into actionable
classifications

e USDA Germplasm a
useful source of
reference information

Osas
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Al Simulation

Guidance on the agronomic and phenotypic characterisation of GM plants

2
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Data Simulation
Applied to Compositional Extrapolation

Algorithms associated with
statistics and machine learning
can both provide estimates and
predictions

Partitioning into training and
holdout data sets ensures
generalizability

Continuous covariate
regressors provide a basis for
extrapolation

Anything can be modeled... do
you have the data to do it?

Model to predict reference varieties in a sea of
germplasm based on composition

Copyright © SAS Institute Inc. All rights reserved.
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Hype Cycle for Artificial Intelligence, 2023
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Generative Al Application

What is the best way to analyze GMO composition data to assess safety?:

Analyzing GMO (Genetically Modified Organism) composition data to assess safety typically involves a multi-faceted approach that combines
various methods and considerations. Here's a general guideline for analyzing GMO composition data:

Define the Safety Parameters: Identify the specific safety parameters you want to assess, such as allergenicity, toxicity, and nutritional
equivalence.

Collect Comprehensive Data: Gather data on the composition of the GMO and its non-GMO counterpart, including proteins, carbohydrates,
fats, vitamins, minerals, and other relevant components.

Statistical Analysis: Use statistical analysis to compare the GMO and non-GMO data sets. Common statistical methods include t-tests, ANOVA,
and multivariate analysis techniques to detect any significant differences.

Evaluate Known Allergens and Toxins: Assess whether the GMO contains known allergens or toxins and compare their levels to established
safety thresholds.

Use Bioinformatics: Employ bioinformatics tools to analyze the DNA and protein sequences of the GMO for potential allergenicity or toxicity.
Compare these sequences to established databases of known allergens and toxins.

Qg
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Generative Al Application

Statistics and machine learning techniques play a vital role in assessing nutritional equivalence between genetically modified organisms (GMOs) and their
non-GMO counterparts. Here's how they can be applied:

Data Collection and Preprocessing:

Collect data on the nutritional composition of GMOs and non-GMOs, including information on proteins, carbohydrates, fats, vitamins, minerals, and other
relevant nutrients.

Preprocess the data by handling missing values, outliers, and normalizing variables to ensure that it's suitable for analysis.

Descriptive Statistics:
Start with basic descriptive statistics to summarize and visualize the data. This can include measures like mean, median, standard deviation, and histograms
to understand the distribution of nutritional components.

Hypothesis Testing:
Use statistical hypothesis testing techniques to determine if there are significant differences in nutrient levels between GMOs and non-GMOs. For instance,

you can perform t-tests or ANOVA to assess differences in means.

Machine Learning Classification:

Employ machine learning classification algorithms to predict whether a sample is GMO or non-GMO based on its nutritional composition. Feature selection
and engineering are crucial in this step.

Common algorithms include logistic regression, decision trees, random forests, and support vector machines.

Gsas
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Generative Al Application

Tell me about a robust data analysis process to address EFSA GMO crop composition requirements for import registration. Apply
the rules of European Commission Implementing Regulations 503/2013, EFSA Guidance for risk assessment of food and feed
from genetically modified plants, EFSA Statistical consideration for the safety evaluation of GMOs, EFSA Guidance on the
agronomic and phenotypic characterisation of genetically modified plants, and other relevant European sources. Apply
additional well-suited statistical techniques to the problem to support a more rigorous safety evaluation within the data
presented.

Addressing EFSA GMO crop composition requirements for import registration involves a systematic and robust data analysis process that complies with
European Commission regulations and EFSA guidelines. Here's a step-by-step approach:

Step 1: Data Collection
1.1. Gather comprehensive data on the genetically modified (GM) crop and its non-GM counterpart(s), including information on genetic modifications,
cultivation practices, and environmental conditions.

Step 2: Data Preprocessing

2.1. Clean the data to remove any outliers or errors.

2.2. Normalize or transform the data as necessary to ensure comparability.

2.3. Separate the data into appropriate categories or groups based on crop type, location, and other relevant factors.

Step 3: Statistical Analysis
3.1. Descriptive Statistics:

Calculate summary statistics (mean, median, standard deviation, etc.) for each compositional parameter in GM and non-GM crops.
Visualize data using histograms, box plots, and scatter plots to identify trends and differences.
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Generative Al Application

An audacious and popular modeling technique that can be applied to test GMO compositional differences and equivalence is Machine Learning (ML),
specifically Random Forest:

Data Preparation: Utilize the preprocessed data as input features and label GM and non-GM crops. Ensure the data is properly balanced and split into training
and testing sets.

Random Forest Modeling:

Train a Random Forest classifier to distinguish between GM and non-GM crops based on their compositional data.

Random Forest can handle high-dimensional data, capture complex interactions, and provide feature importance rankings.

Feature Importance Analysis: Use the Random Forest model to identify which compositional parameters contribute the most to the classification decision.
This helps pinpoint the most critical differences between GM and non-GM crops.

Validation and Interpretation:

Validate the model's performance using appropriate metrics (accuracy, precision, recall, etc.) on the testing dataset.

Interpret the model's results to assess the significance and biological relevance of compositional differences.

Equivalence Testing:

Integrate the model's predictions with equivalence testing techniques to determine if the observed differences are within acceptable limits.
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Common Al excellence threads across organizations
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How SAS supports 215t century regulatory science teams
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Overall Summary
Trends in Al and Analytics

Composite and First Principles Al enables better [statistical] inference

Synthetic data and decision intelligence facilitate faster and more
robust decision frameworks

When done well, Al simulation supports extrapolation to ‘edge
scenarios’.

Generative language models can summarize lots of information
quickly and can spark ideation

SAS enables regulatory scientists to adopt and expand multimodal
analytics
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