syngenta

Detection of Genome Edited Plant Products-Opportunities and Challenges

Chunyang Fan, Ryan Carlin, PoHao Wang Syngenta, RTP, North Carolina April 7th, 2022 AEIC meeting

Classification: PUBLIC

Presentation Outline

- CRISPR system and Genome editing (GE)
- Comparison of molecular characterization of GM and GE plants
- Detection methods for GE crops
- Challenges in detecting GE plant products
- Summary

CRISPR system and Genome editing

Major CRISPR-Cas enzymes

Table 1 Naturally occurring major CRISPR-Cas enzymes							
	Size	PAM sequence	Size of sgRNA guiding sequence	Cutting site	Reference		
spCas9	1368	NGG	20 bp	~ 3 bp 5' of PAM	Jinek et al. ⁴²		
FnCas9 SaCas9 NmCas9 St1Cas9 St3Cas9	1629 1053 1082 1121 1409	NGG NNGR RT NNNNG ATT NNAGA AW NGGNG	20 bp 21 bp 24 bp 20 bp 20 bp	~ 3 pb 5' of PAM ~ 3 pb 5' of PAM ~ 3 bp 5' of PAM ~ 3 bp 5' of PAM ~ 3 bp 5' of PAM	Gasiunas et al. ⁴³ Hirano et al. ⁶⁰ Mojica et al. ⁵⁷ Hou et al. ⁵³ Gasiunas et al. ⁴³ Cong et al. ⁴⁵ Gasiunas et al. ⁴³		
CjCas9 AsCPf1 LbCpf1	984 1307 1228	NNNNACAC TTTV TTTV	22 bp 24 bp 24 bp	~ 3 bp 5' of PAM 19/24 bp 3' of PAM 19/24 bp 3' of PAM	Cong et al. ⁴⁵ Kim et al. ⁵⁶ Yamano et al. ⁵⁰ Kim et al. 2016 Yamano et al. ⁵⁰		
Cas13	Multiple orthologs	RNA targeting	28 bp		Kim et al. 2016 Abudayyeh et al. 2017		

- Two classes of CRISPR systems: each contains multiple types.
- Class I contains type I and type III systems, commonly found in archaebacteria.
- Class II contains type II, IV, V and VI systems.
- Widely used Cas enzymes: spCas9- type II, Cas12 (Cfp1)- type V.

Overview of genome editing strategies and enzymes

Chr 3

Chr 7

Chr 3

Chr 7

Anzalone AV et al., Nature Biotech (2020) 824-844

CRISPR-Cas system and genome editing

- Key components:
 - Target sequence: 20-21 bases
 - SDN enzymes: Cas9, Cas12a endonucleases
 - sgRNA: directs SDN enzyme to the target
 - PAM: Protospacer Adjacent Motif
 - Cas9: 5'-NGG-3', cutting site at upstream of 3rd bp.
 - Cas12a: 5'-TTTN-3', cutting site at downstream of 19-24 bp

• Mutations generated by CRISPR-Cas:

- SDN-1: induction of single point mutations or small In/Del, without donor;
- SDN-2: short insertions or editing of a few base-pairs (allele replacement) with donor;
- SDN-3: insertion of longer foreign DNA fragment (transgene) using donor;

(NBT platfom: https://www.nbtplatform.org/)

Comparison of molecular characterization of GM and GE plants

GM and GE Product Development

Consideration for GE event molecular characterization

	GM	GE
Transgene characterization	Transgene (i.e., trait gene) copy #;	Transgene (i.e., GE machinery) copy #
Absence of the transgene in the later generation	Confirmation of absence of vector backbone	Confirmation of absence of the transgene (GE machinery) and vector backbone
Trait or target gene expression	Temporal or spatial expression of trait gene	SDN2 and SDN3 editing
Editing at the target gene(s)- On- Target edit	Flanking sequence recovery (FSR)	SDN1: different editing allele with indels SDN2: Examine if the desired allele replacement is intact SDN3: Examine if the desired DNA template is intact
Inheritability	Transgene inheritability	Edited alleles or insertion DNA fragment inheritability

Detection methods for GE crops

Approaches for detecting <u>On-target</u> editing plants

• PCR amplification-based methods:

- Cleaved amplified polymorphic sequences (CAPS)
- Allele specific primer extension (ASPE)
- Mismatch cleavage assay (T7E1 surveyor assay)
- High resolution melting analysis (HRM)
- TaqMan real-time PCR: LNA probe, rhPCR, castPCR, etc.
- Digital PCR (dPCR)
- Sequencing-based methods:
 - Sanger sequencing
 - NGS: amplicon sequencing

Mismatch cleavage assay

- Amplify target site and flanking sequence (~ 500 1000bp) by PCR
- Denature and anneal to form hetero-duplex DNA
- Digestion by T7E1 and run agarose gel
- Simple, cost-effective
- Can't detect homozygous mutations

Zhu X et al., Scientific Reports 4, 6420 (2014).

High resolution melting analysis (HRM)

- Amplification of about 80-200bp with DNA binding dye
- Run melting curve analysis
- Can distinguish homozygous mutation

Thomas HR et al., PLOS ONE 9 (12): e114632 (2014).

TaqMan PCR approach for detecting SDN1 and SDN2 mutations

- Negative selection, also called drop-off assays
- Short probe is designed at SDN cutting sites
- High sensitivity, low cost

Interpretation of TaqMan results (e.g., diploid crop)

Copy number	Genotype
2 copies	wild type
1 сору	one allele is mutated
0 сору	two alleles are mutated

Digital PCR (dPCR) technology

Two different technologies:

- Droplet Digital PCR (ddPCR): PCR is performed in a water-oil emulsion in nanoscale reaction.
- Chip based: digital array and Open array.

(BioRad technical report)

NGS amplicon sequencing

Targeted deep sequencing

Example of edited sequences

Multiplexing using distinct barcode system

(Example from CRISPResso, https://crispresso.pinellolab.partners.org/)

Challenges in detecting GE plant products

Regular practice in detecting GM (genetically modified) plant products

- TaqMan real-time PCR is the gold standard for GM detection (individual or bulk samples).
 - Event specific assay (ESA): designed at the junction of T-DNA and flanking sequence from genome to detect a particular event.
 - Component assay: trait genes (e.g., PAT, EPSPS) or commonly used promoters and terminators (p35S, tNOS etc.).

https://www.indianacrop.org/Lab-Services/Low-Level-Presence/GMO-Non-GMO-Scr

Challenges in detecting GE (genome edited) plant products

- Develop a detection method with comparable sensitivity and specificity as for GM detection.
 - For unique editing sequences (small insertion, deletion or even one single nucleotide change) in the GE events, PCR-based assay may not be robust enough to differentiate from the WT sequence.
- The ability to routinely and reliably detect the GE-derived small indels in <u>bulk</u> grain sample (mixed or heterogeneous) as opposed to pure and homogeneous samples from the laboratory.
- Need a high-quality database: include all genotypes of genome-edited plants as reference.

Summary

- Genome editing technology can greatly accelerate trait development and crop breeding.
- As compared with GM detection method, GE product requires different analytical approaches during the trait development process to characterize editing alleles. There are more challenges in detecting GE plants.
- In the early phase of GE product development, PCR based and NGS based technology complement each other to distinguish the editing alleles from the WT allele derived from conventional breeding.

Acknowledgements

PoHao Wang

Ryan Carlin

Weining Gu

Wenjin Yu

Yan Zhang

Liang Shi

Thank you!

