

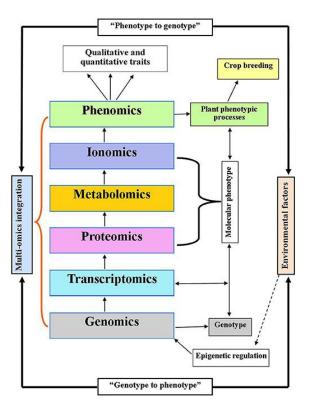
Next Generation Sequencing in Next Generation Agriculture

Farhad Ghavami Chief Scientific Officer (Agrigenomics) Eurofins BioDiagnostics Inc.

www.eurofinsus.com/food

Next Generation Agriculture

Multi-omics technologies are being used today to move the crop breeding and management to the next generation agricultural era!


The combination of different omics analysis has helped scientist in identifying potential candidate genes and their pathways and created the path for MAS and genetic modifications via traditional breeding and genome editing approaches.

REVIEW published: 03 September 2021 doi: 10.3389/fpls.2021.563953

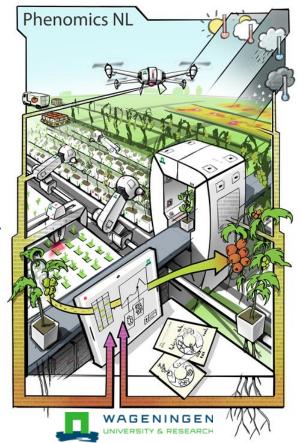
Applications of Multi-Omics Technologies for Crop Improvement

Yaodong Yang ^{1+†}, Mumtaz Ali Saand ^{1,2†}, Liyun Huang ¹, Walid Badawy Abdelaal ¹, Jun Zhang ¹, Yi Wu ¹, Jing Li ¹, Muzafar Hussain Sirohi² and Fuyou Wang ¹

Next Generation Phenomics and Al

International Plant Phenotyping Network

Mission: IPPN members recognize the need to integrate globally plant phenotyping approaches across all levels of plant systems, from molecular to field. IPPN members are also aware that developing and breeding new varieties of plants with improved performance is necessary for the future.

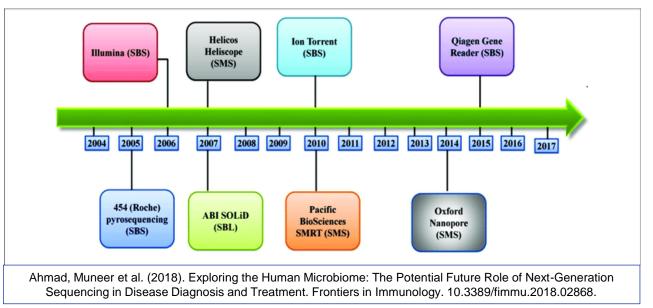

Trends in Biotechnology

REVIEW | VOLUME 37, ISSUE 11, P1217-1235, NOVEMBER 01, 2019

Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence

Antoine L. Harfouche A. ⊡ • Daniel A. Jacobson • David Kainer • ... Gerald A. Tuskan • Joost J.B. Keurentjes • Arie Altman A. ⊡ • Show all authors

Published: June 21, 2019 • DOI: https://doi.org/10.1016/j.tibtech.2019.05.007 • 🔳 Check for updates



🔅 eurofins

Next Generation Sequencing

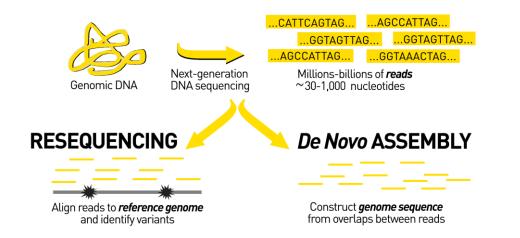
Second generation sequencing or massively parallel sequencing emerged in 1998 and is commercially available since 2005 by the name of 454 sequencing using pyrosequencing technology. Illumina purchased the Solexa genome analyzer on 2006 and commercialized it in 2007 and then revolutionized the second generation sequencing by providing accurate and affordable sequencing.

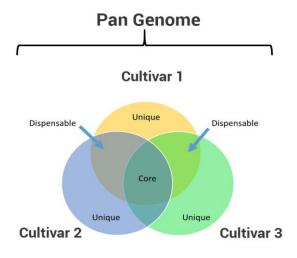
Next Generation Sequencing

Third generation sequencing methods mostly focused on single molecule long reads or reducing the cost of sequencing. Pacific BioSciences introduced the PacBio RSII in 2010 to address the limitation of the short read sequencing effecting genome assemblies.

						Platform	
GS platforms/company/max output per	Read length per	No. reads	Time (h or	Cost per	Raw error	cost (USD	
run	run (bp)	per run	days)	10 ⁶ bases	rate (%)	approx.)	Chemistry
First generation							
Sanger/Life Technologies/84 kb	800	1	2 h	2400	0.3	95,000	Dideoxy terminator
Second generation							
454 GS FLX+/Roche/0.7 Gb	700	1×10 ⁶	24/48 h	10	1	500,000	Pyrosequencing
GS Junior/Roche/70 Mb	500	1×10 ⁵	18 h	9		100,000	Pyrosequencing
HiSeq/Illumina/1500 Gb	2x150	5×10 ⁹	27/240 h	0.1	0.8	750,000	Reversible terminators
MiSeq/Illumina/15 Gb	2x300	3×10 ⁸	27 h	0.13	0.8	125,000	Reversible terminators
SOLiD/Life Technologies/120 Gb	50	1×10 ⁹	14 days	0.13	0.01	350,000	Ligation
Retrovolocity/BGI/3000 Gb	50	1×10 ⁹	14 days	0.01	0.01	12×106	Nanoball/ligation
Ion Proton/Life Technologies/100 Gb	200	6×10 ⁷	2–5 h	1	1.7	215,000	Proton detection
Ion PGM/Life Technologies/2 Gb	200	5×10 ⁶	2–5 h	1	1.7	80,000	Proton detection
Third generation							
SMRT/Pac Bio/1 Gb	>10,000	1×10 ⁶	1–2 h	2	12.9	750,000	Real-time SMS
Heliscope/Helicos/25 Gb	35	7×10 ⁹	8 days	0.01	0.2	1.35×10 ⁶	Real-time SMS
Nanopore/Oxford Nanopore Technologies/1 Gb	>5000	6×10 ⁴	48/72 h	<1	34	1000	Real-time SMS
Electron microscopy/ZS	7200		14 h	<0.01		1×10 ⁶	Real-time SMS
Genia nanopore (http://www.geniachip.com)							Real-time SMS

Applications of Next Generation Sequencing


Whole Genome Sequencing


The whole genome sequencing is an essential step for finding the sequence variants (SVs) used for marker discovery, gene discovery and genome structural variations.

Della Coletta et al. Genome Biology (2021) 22:3 https://doi.org/10.1186/s13059-020-02224-8 Genome Biology

How the pan-genome is changing crop genomics and improvement

Rafael Della Coletta¹, Yinjie Qiu¹, Shujun Ou², Matthew B. Hufford^{2*} and Candice N. Hirsch^{1*}

Transcriptome Sequencing

Transcriptome analysis using SAGE, Microarrays, DD AFLPs and Northern blots is now expired! And RNA Seq is the new tool!

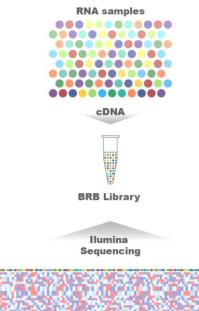
Genome Biology

Check for updates

Published in final edited form as: Wiley Interdiscip Rev RNA. 2017 January ; 8(1): . doi:10.1002/wrna.1364.

RNA-Seq methods for transcriptome analysis

Radmila Hrdlickova¹, Masoud Toloue^{1,*}, and Bin Tian^{2,*}

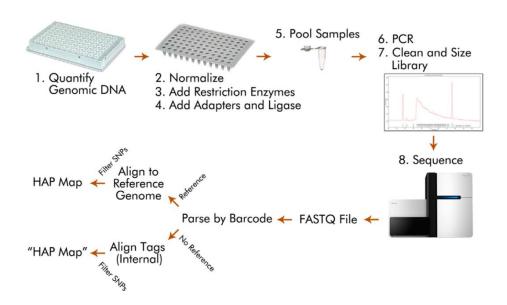

¹Bioo Scientific Inc., Austin, TX, USA

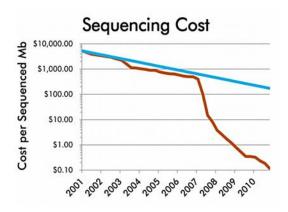
²Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA

Alpern et al. Genome Biology (2019) 20:71 https://doi.org/10.1186/s13059-019-1671-x

BRB-seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing

Daniel Alpern^{1,2†}, Vincent Gardeux^{1,2†}, Julie Russeil¹, Bastien Mangeat³, Antonio C. A. Meireles-Filho^{1,2}, Romane Breysse¹, David Hacker⁴ and Bart Deplancke^{1,2*}


Whole Genome Expression Data


Genotyping by Sequencing

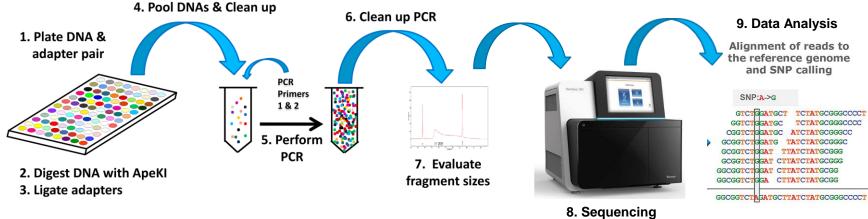
- 1) Restriction enzyme mediated genotyping by sequencing
- 2) Hybridization based targeted sequencing
- 3) Amplicon based targeted sequencing

9

4) Skim sequencing (re-sequencing by low coverage)

🔅 eurofins

Genotyping-by-Sequencing for Plant Breeding and Genetics

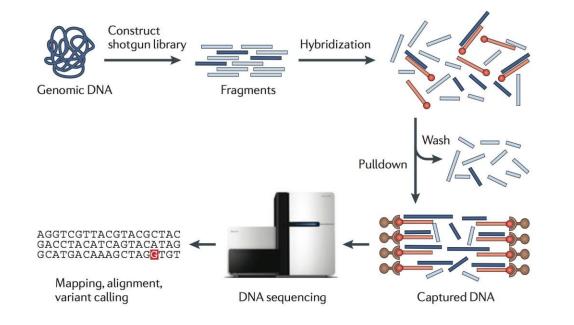

Jesse A. Poland* and Trevor W. Rife

www.eurofins.com/biodiagnostics

BioDiagnostics

Restriction Enzyme Mediated GBS

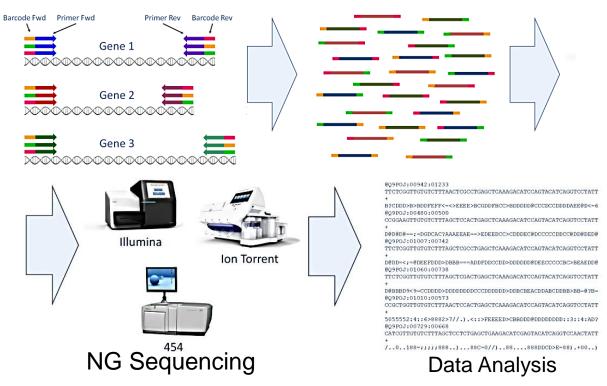
GBS via restriction enzyme: using different restriction enzymes, the genome will be digested and only the fragments with certain sizes will be amplified and sequenced.



BioDiagnostics

🔅 eurofins

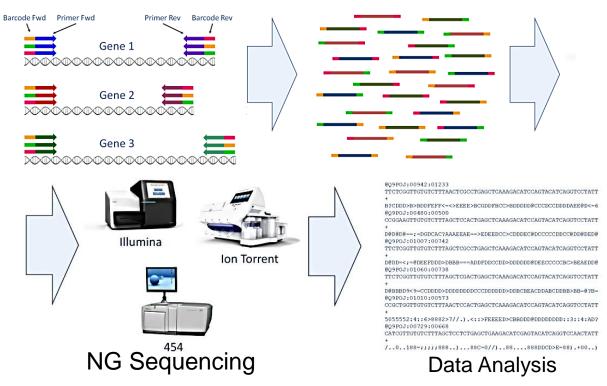
Hybridization Based GBS (Sequence Capture)


The genome will be physically or enzymatically fragmented to small fragments. Then the targets will be captured by probes attached to beads or arrays and will be sequenced.

BioDiagnostics

Amplicon Based Targeted Sequencing

Hundreds of regions in the genome will be amplified using multiplex PCR approach. Then the PCR fragments will be sequenced.

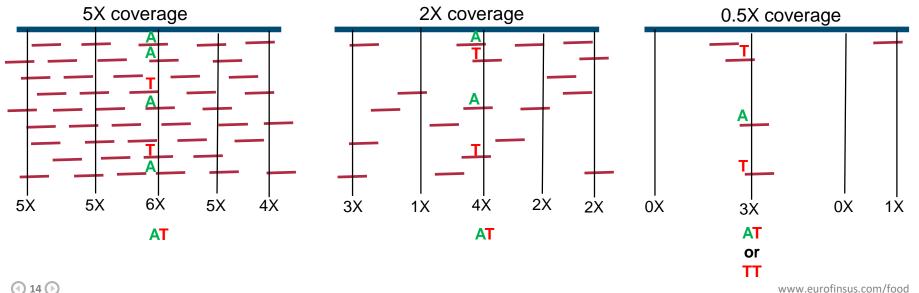

www.eurofinsus.com/food

🔅 eurofins

12 🕑

Amplicon Based Targeted Sequencing

Hundreds of regions in the genome will be amplified using multiplex PCR approach. Then the PCR fragments will be sequenced.


www.eurofinsus.com/food

🔅 eurofins

🔅 eurofins

Skim Sequencing (Shallow Sequencing)

Substantial reduction in sequencing cost has made low depth whole genome resequencing a novel strategy for genotyping. Shallow sequencing by a coverage less than 1X (0.25X, 0.5X, 1X) have been used successfully in genotyping plant and animals.

www.eurofinsus.com/food

Skim Sequencing (Shallow Sequencing)

Skim sequencing is a great alternative for array based genotyping when >50,000 markers is needed. However having a deep sequencing of the parental lines or a well defined pan genome information of the species of interest and a great imputation strategy is essential for this method.

Evaluation and Recommendations for Routine Genotyping Using Skim Whole Genome Re-sequencing in Canola

PLOS ONE

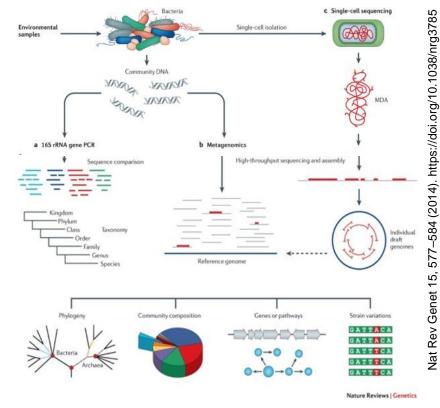
Evaluating Imputation Algorithms for Low-Depth Genotyping-By-Sequencing (GBS) Data

Ariel W. Chan¹*, Martha T. Hamblin², Jean-Luc Jannink^{1,3}

M. Michelle Malmberg^{1,2}, Denise M. Barbulescu², Michelle C. Drayton¹, Maiko Shinozuka¹, Preeti Thakur¹, Yvonne O. Ogaji¹, German C. Spangenberg^{1,2}, Hans D. Daetwyler^{1,2} and Noel O. I. Cogan^{1,2,*}

> SNP-skimming: a fast approach to map loci generating quantitative variation in natural populations

Carolyn A. Wessinger 1,* , John K. Kelly 1 , Peng Jiang 2 , Mark D. Rausher 2 , and Lena C. Hileman 1

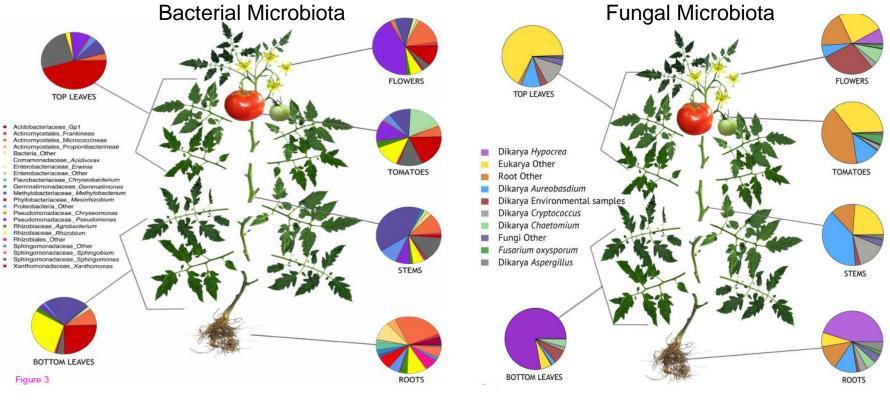

¹Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS

²Department of Biology, Duke University, Durham, NC

🛟 eurofins


Microbiome Detection Methods

- Next Generation Sequencing
 - Whole genome
 Sequencing
 - 16S/18S/ITS Sequencing
 - Metagenomics (Shotgun Sequencing)
 - Single cell sequencing

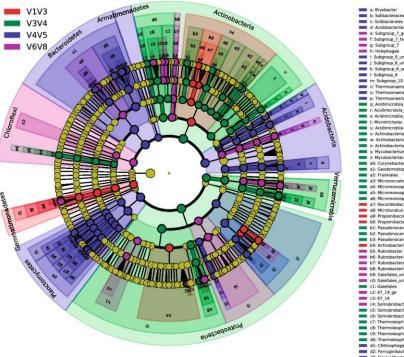

🔅 eurofins

Targeted 16S, 18S, ITS Sequencing

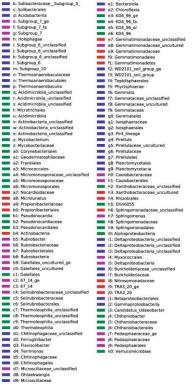
Microbiome in Plants

Ottesen et al BMC MICROBIOL 2013

18 🕑



e0: Cytophagale


Soil Microbiome

16S targeted Microbiome analysis can detect the bacteria to their genera and their abundance ratio in the soil. In soil samples, the taxa detected by V1V3 and V3V4 regions were similar, in order of abundance: Proteobacteria. Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Gemmatimonadetes, Chloroflexi and Verrucomicrobia, But V4V5 and V6V8 produced a slighty different patterns.

Cladogram for 16S rRNA regions in soil samples

Soriano-Lerma et. al. 2020 Scientific Reports 10: 13637

Conclusion

- The advent of next generation sequencing methods have changed the landscape of agricultural studies.
- The ongoing cost reduction in next generation sequencing made it the proper tool for different applications like genotyping, microbiome analysis, differential gene expression analysis, epigenomics studies and numerous other applications when nucleic acids are involved.
- Genotyping by sequencing is now the main tool for ultra high throughput screening of >50 markers when lots of samples needs to be genotyped.
- Microbiome studies using whole genome or targeted sequencing shed light into a new definition of plant/animal and human health management and host environment interactions.

Thank you !

Questions?

Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the rights to do so.