syngenta

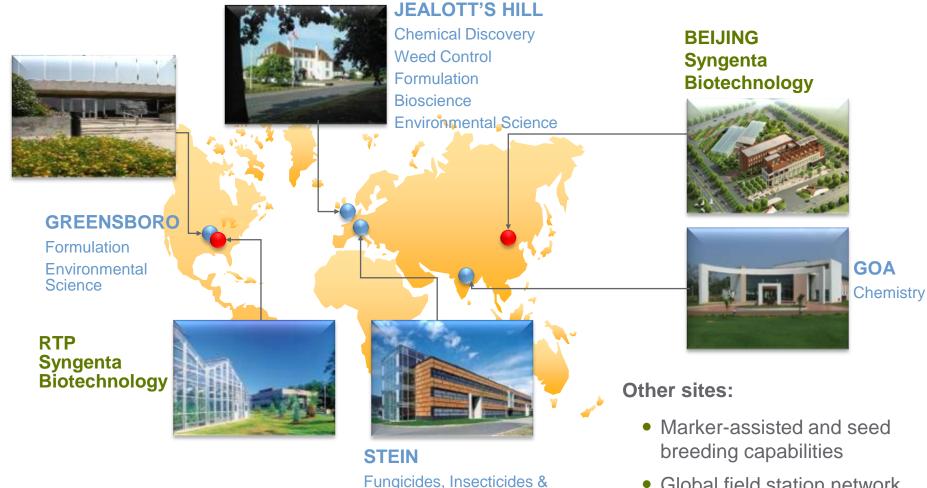
Agricultural Applications for Genome Sequencing

AEIC April 2012 Presented by Joe Clarke, NGS Platform Lead, Syngenta RTP NC

Syngenta at Home and Abroad

Who we are and what we do

Syngenta is one of the world's leading companies with more than 26,000 employees in over 90 countries dedicated to our purpose: Bringing plant potential to life.


Our Crop Protection and Seeds products help growers increase crop yields and productivity. We contribute to meeting the growing global demand for food, feed and fuel and are committed to protecting the environment, promoting health and improving the quality of life.

Global R&D capabilities

Professional Products

Global field station network

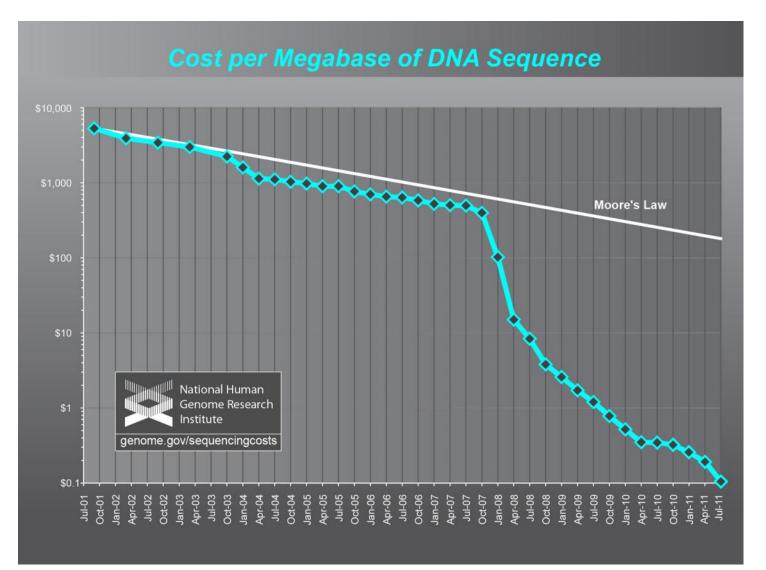
Syngenta Biotechnology

Proven delivery of biotech innovation with industry firsts

Delivering innovation is the focus of Syngenta scientists, who use a combination of bioscience and cuttingedge technology to develop innovative solutions that help farmers, food companies, and consumers meet tomorrow's challenges.

- Formed in 1984
- Located in Research Triangle Park, NC
- Strong ties with the community and local academic institutions
- State-of-the-art facilities
 - 120,000 sq ft of lab space
 - 50,000 sq ft of greenhouse space
 - 27,000 sq ft of office space
 - 100,000 sq ft of new office space
- Approximately 400 employees
 - Expansion underway

Next-Gen Sequencing and Genome Assemblies



A series of short stories describing platforms and capabilities

- A series of short stories describing downstream applications for genome assemblies
 - Brief overview of genome assembly
 - Highlighting projects requiring different assembly strategies
 - Marker discovery and trait association to gene cloning
 - Genotype by sequencing for RIL mapping
 - Population structure and GWAS analysis

The price point for sequencing continues to drop

Assemblers and Aligners

Table 1

Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus architecture. DBG refers to the de Bruin graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers		OLC Assemblers	DBG Assemblers	
Modeled features of reads				
Base substitutions Homopolymer miscount		CABOG	Euler, AllPaths, SOAP	
Concentrated error in 3' end		Nechler	Euler	
Flow space Color space		Newbler Shorty	Velvet	
Removal of erroneous reads				
Based on K-mer frequencies Based on K-mer freq and QV For multiple values of K By alignment to other reads By alignment and QV	SHARCGS	CABOG	Euler, Velvet, AllPaths AllPaths AllPaths	
Correction of erroneous base calls				
Based on K-mer frequencies Based on Kmer freq and QV Based on alignments		CABOG	Euler, SOAP AllPaths	
Approaches to graph construction				
Implicit Reads as graph nodes K-mers as graph nodes Simple paths as graph nodes Multiple values of K	SSAKE, SHARCGS, VCAKE	CABOG, Newbler, Edena	Euler, Velvet, ABySS, SOAP AllPaths Euler	
Multiple overlap stringencies	SHARCGS		L. LUC I	
Approaches to graph reduction				
Filter overlaps Greedy contig extension Collapse simple paths	SSAKE, SHARCGS, VCAKE	CABOG CABOG, Newbler	Euler, Velvet, SOAP	
Erosion of spurs Transitive overlap reduction		CABOG, Edena Edena	Euler, Velvet, AllPaths, SOA	
Bubble smoothing Bubble detection		Edena	Euler, Velvet, SOAP AllPaths	
Reads separate tangled paths Break at low coverage			Euler, SOAP Velvet, SOAP	
Break at high coverage High coverage indicates repeat Special use of long reads		CABOG CABOG Shorty	Euler Velvet Velvet	
Graph partitions				
Partition by K-mers Partition by scaffolds			ABySS AllPaths	
Uses for mate pairs				
Constrain path searches			Euler, Velvet, AllPaths	
Guide path selection Detect misassembled contigs		CABOG, Shorty	Euler, Allpaths	
Merge contigs or fill gaps		CABOG, Shorty	Velvet, ABySS, SOAP	
Transitive link reduction		CABOG	SOAP	
Detect, avoid repeat contigs		CABOG	Velvet, SOAP	
Create scaffolds		CABOG, Shorty	Euler, Velvet, AllPaths, SO/	

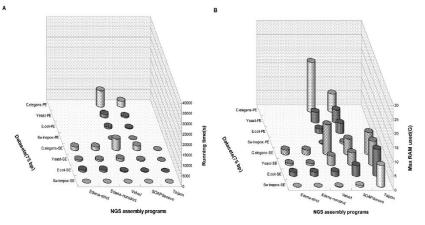
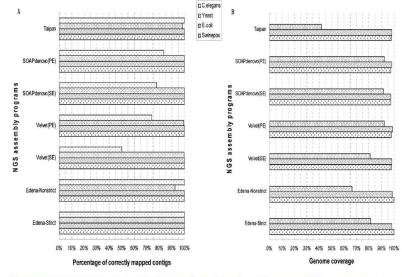
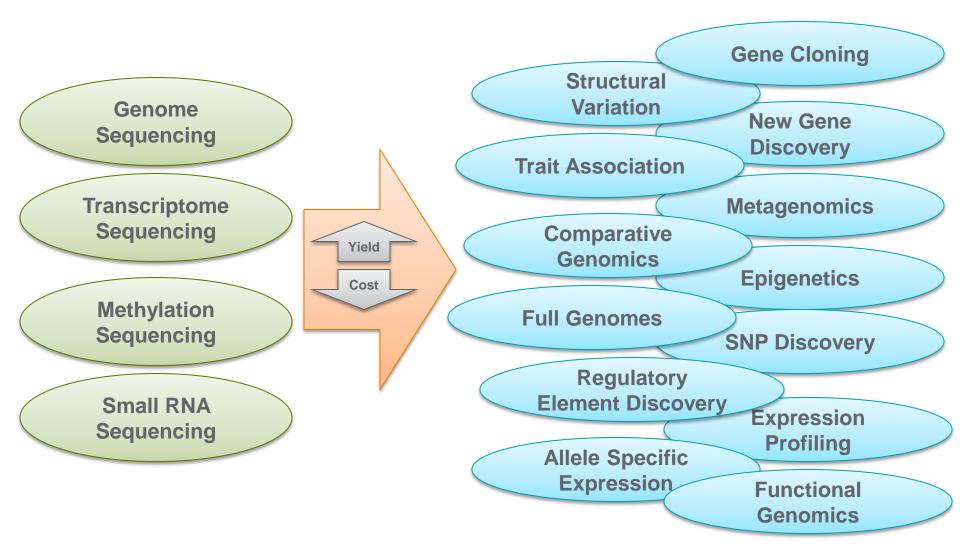


Figure 3. Computational running time and maximum memory occupancy of 75-mer short reads assembly procedures. (A) the computational times of each assembler for different datasets. (B) the maximum RAM used during the assembly process. No data is shown when the RAM is insufficient or the assembly tool is not suitable for the dataset. doi:10.1371/journal.pone.0017915.g003

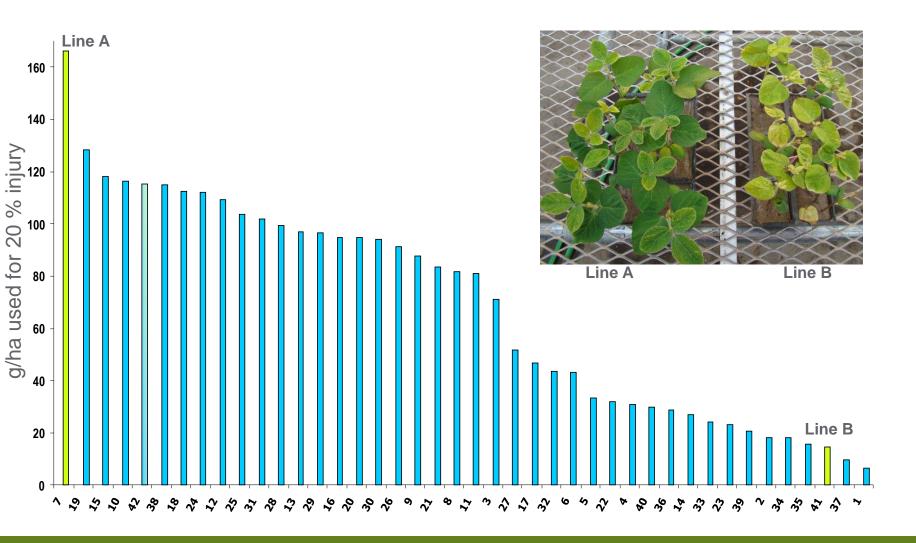



Figure 5. Accuracy and integrity for 75-mer datasets assembly. For short reads assembly, accurate and high genome coverage contigs are expected. Here, the quality of consequential contigs is shown with (A) the accuracy of assembled contigs and (B) the genome coverage of the assembled contigs. No data is shown when the RAM is insufficient or the assembly tool is not suitable for the dataset. doi:10.1371/journal.pone.0017915.g005

Miller et al., Genomics 95 (2010)

Zhang et al., Plos One 6 (2011)

It is not about the sequence or the assembly



Marker Discovery and Trait Association to Functional Validation

Shannon McDonald **Ernie Chilcott Molly Dunn Chris Basten Becky Breitinger** Ju-Kyung Yu **Joe Curley** Harish Ghandi **Joe Clarke Bernard Vernooij Sheng Sheng Zhang** Lynn Senior John Hipskind **Metabolon**

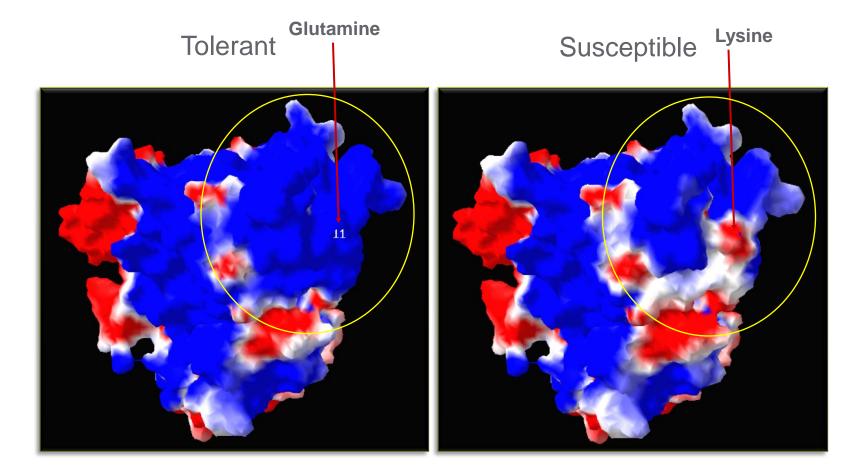
Syngenta conventional soybeans have range of tolerance to a soil applied herbicide

Bulked segregant analysis

- Cross highly susceptible and highly tolerant lines and make a segregating mapping population.
- Use highly tolerant and highly susceptible progenies to make pools which should be genotypically different at the trait linked regions only.
- Genotype the pools and identify markers to fine map major QTL.
- Search for candidate genes.
- Sequence candidates in segregating populations to look for polymorphisms that segregate perfectly with trait.

As new technologies appeared, we adapted - Solexa sequence - based BSA

- Pools were created from the tolerant and susceptible lines as before.
- RNA extracted
- cDNA synthesized
- The transcriptome of the pools was sequenced
- SNPs specific to each pool were identified
- The same major QTL from the previous mapping study was detected
- New markers were identified that could be used to fine map the QTL .


SNPs that appear to be associated with the phenotype

		1,385,702	1,385,735	1,418,379	1,418,379	1,467,691	1,467,820
Line	Phenotype	Candidate gene 2	Candidate gene 2	Candidate gene 3	Candidate gene 3	Candidate Gene 5	Candidate gene 5
Soy 1S	Suseptible	А	G	deletion	С	С	G
Soy 2S	Suseptible	А	G	deletion	?	С	G
Soy 3S	Suseptible	А	G	deletion	?	С	G
Soy 4S	Suseptible	н	G	deletion	с	С	G
Soy 5S	Suseptible	А	G	deletion	С	С	G
Williams82	Tolerant	G	А	no del	т	т	А
Williams	Tolerant	G	А	no del	?	т	?
Soy 1T	Tolerant	G	А	no del	т	т	А
Soy 2T	Tolerant	G	А	no del	т	т	А
Soy 3T	Tolerant	G	А	no del	т	?	?
Soy 4T	Tolerant	G	А	no del	т	т	А
Soy 5T	Tolerant	G	А	no del	т	?	?

Gene	Polymorphisms	Changes in tolerant parent
Candidate gene 5	2 SNPs	1 st SNP Silent. Second causes a Lysine to Glutamine transition
Candidate gene 3	1SNP, 1 BIG Deletion	SNP in the last intron. Deletion resulted in a significant truncation.
Candidate gene 2	2 SNPs	none - SNPs in 5' untranslated region

Effect on electrostatic surface charge

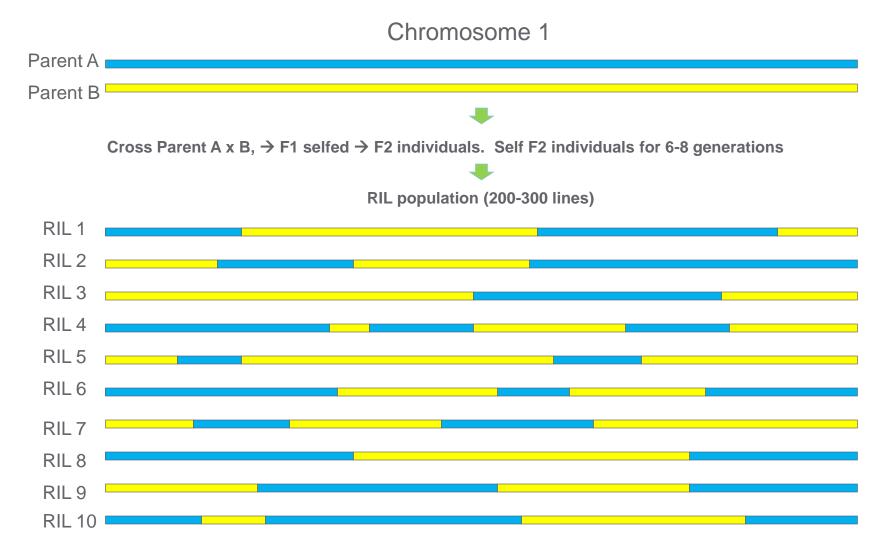
(Blue: positively charged region, Red: Negatively charged region)

In planta validation

- Out of 6 genes from the QTL region, one was determined to be a pseudogene and was not validated further.
- Transient expression of all five genes + controls was done in early 2011 in tobacco leaves
- Constructs were made using a constitutive promoter
- After infection, herbicide treated tobacco leaf samples were sent for metabolite profiling to check for herbicide breakdown products
- Plan was to choose one or two most effective gene family members for further study

Bob Dietrich Linda Ambroso Rex Dwyer

The watermelon RIL mapping story Genotype by Sequencing: Pl0007082

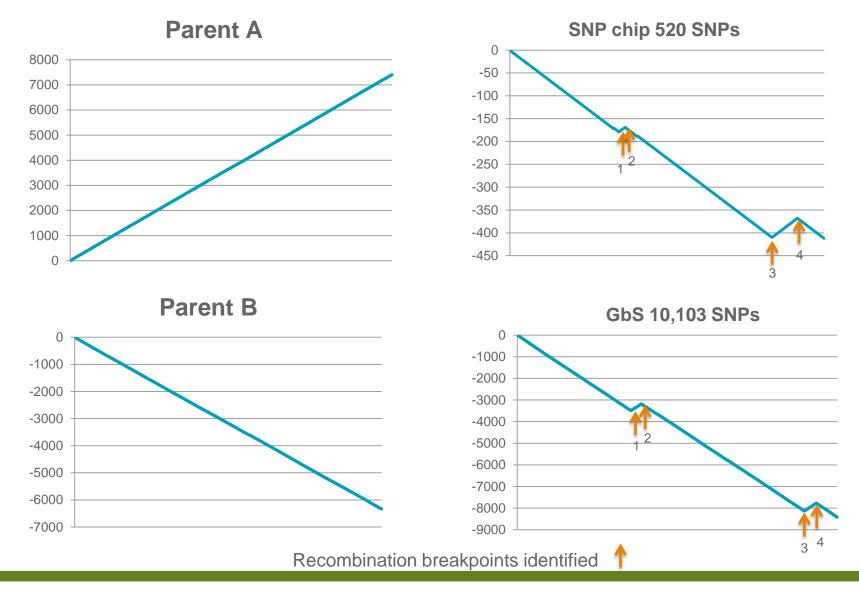


Genotyping by Next-Generation Sequencing (GBS)

- High-throughput genotyping by whole-genome resequencing
 - Huang et al., Genome Res. 2009 19: 1068-1076
- Resequenced 150 rice recombinant inbred lines (RIL)
 - Average coverage of the genome in each line: 0.02X
 - Analyzed the data using a "sliding window" approach
- Results
 - Claimed genotyping accuracy of 99.94%
 - Identified recombination breakpoints with 40kb resolution

Recombinant inbred lines

Pilot project to map a watermelon RIL population through GBS


- Watermelon recombinant inbred population
 - Parental lines sequenced for SNP discovery
 - 200,000 high confidence SNPs found
 - Used as reference for genotyping by sequencing
- 84 recombinant inbred lines sequenced on GAIIX

Crop		SNP rate between Parents	Coverage
Rice	340 Mb	3.2 SNPs/kb	0.02X
Watermelon	424 Mb	0.5 SNPs/kb	0.36X

 Affymetrix watermelon SNP chip genotyping conducted to compare platforms and cross validate results

Identifying recombination: chromosome 7 example

Visualization of recombination break points

Genotyping results from a segment of chromosome 7 after variant analysis across seven RIL lines

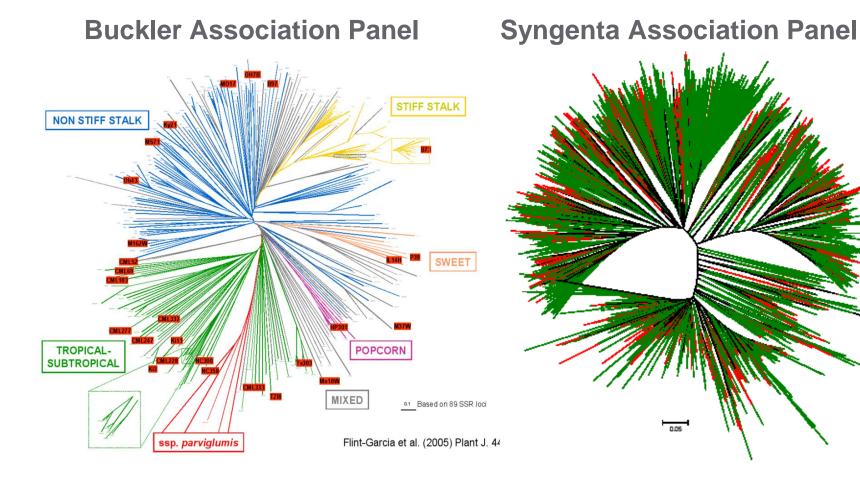
Contrasting GBS and Chip genotyping for chromosome 7

	SNP Chip	Genotype by Seq
Range, breakpoint interval size	28 kb-13 mb	62 bp -224 kb
Ave. breakpoint interval size	1,286,000 bp	55,000 bp
Ave. number of SNPs scored/line	518	8,000
SNP density	1 SNP/60 kb	1 SNP/4 kb

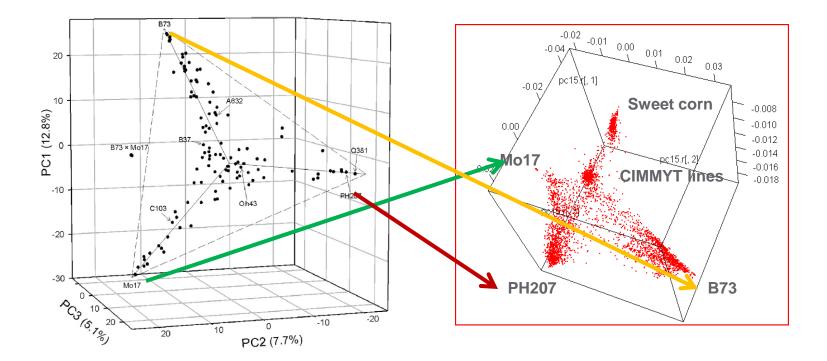
Illustrates the difference between RIL mapping with markers (closed system) and direct sequencing (open system)

Resolving Population Structure and Conducting GWAS

Elhan Ersoz Joe Clarke **Nicolas Martin Keith Allen Christine Chaulk-Grace Rex Dwyer** Sarah Forrester **Eric Ganko** Suresh Kadaru **Julie Leonard Jinwei** Liu **Tom Prest Dale Skalla Daolong Wang Todd Warner Chris Zinselmeier**



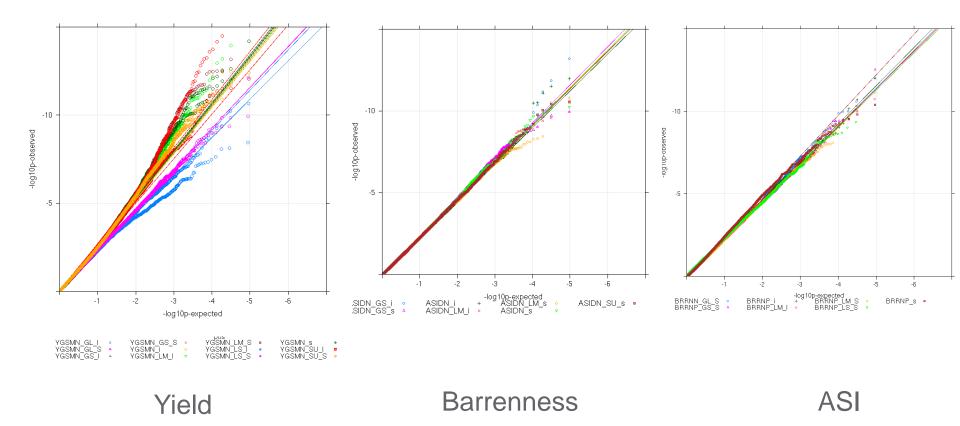
Different population structure requires different GWAS methods



Public and Syngenta Germplasms Have Different Structures

syngenta

Syngenta Germplasm Population Structure similar to ex-PVPs'


Nelson et al. 2008

First 3 Principal Components
•55K chip data
▶3500 Syngenta lines

≻500 CIMMYT elite inbreds

Structure control in GWAS with Unified Mixed Model Association with P3D and Compression : $Y = Q + K_1 + K_2 + E$

Significant new drought-tolerance loci identified

- False positives due to populations structure influence on the traits were reduced by 25-50%.
- We exploited
 - 55K SNP genotyping chip (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028334)
 - 1.1M proprietary Syngenta SNPs from RNAseq-based GBS
 - 1.4M HapMap SNPs imputed onto our population using lines in common with HapMap v1.
 - Total 2.1M SNPs, 30% of these mappable to $\sim \frac{3}{4}$ of available gene models.
 - Average 22 SNPs per gene model and approximately 1 SNP per 1000 bps.
- Our successful GWAS on Syngenta germplasm for yield component traits identified new leads for future Agrisure Artesian[™] Product Development.

Bringing plant potential to life

Thank you for your attention!

